In this work, we propose an ID-preserving talking head generation framework, which advances previous methods in two aspects. First, as opposed to interpolating from sparse flow, we claim that dense landmarks are crucial to achieving accurate geometry-aware flow fields. Second, inspired by face-swapping methods, we adaptively fuse the source identity during synthesis, so that the network better preserves the key characteristics of the image portrait. Although the proposed model surpasses prior generation fidelity on established benchmarks, to further make the talking head generation qualified for real usage, personalized fine-tuning is usually needed. However, this process is rather computationally demanding that is unaffordable to standard users. To solve this, we propose a fast adaptation model using a meta-learning approach. The learned model can be adapted to a high-quality personalized model as fast as 30 seconds. Last but not the least, a spatial-temporal enhancement module is proposed to improve the fine details while ensuring temporal coherency. Extensive experiments prove the significant superiority of our approach over the state of the arts in both one-shot and personalized settings.
translated by 谷歌翻译
The electrification of shared mobility has become popular across the globe. Many cities have their new shared e-mobility systems deployed, with continuously expanding coverage from central areas to the city edges. A key challenge in the operation of these systems is fleet rebalancing, i.e., how EVs should be repositioned to better satisfy future demand. This is particularly challenging in the context of expanding systems, because i) the range of the EVs is limited while charging time is typically long, which constrain the viable rebalancing operations; and ii) the EV stations in the system are dynamically changing, i.e., the legitimate targets for rebalancing operations can vary over time. We tackle these challenges by first investigating rich sets of data collected from a real-world shared e-mobility system for one year, analyzing the operation model, usage patterns and expansion dynamics of this new mobility mode. With the learned knowledge we design a high-fidelity simulator, which is able to abstract key operation details of EV sharing at fine granularity. Then we model the rebalancing task for shared e-mobility systems under continuous expansion as a Multi-Agent Reinforcement Learning (MARL) problem, which directly takes the range and charging properties of the EVs into account. We further propose a novel policy optimization approach with action cascading, which is able to cope with the expansion dynamics and solve the formulated MARL. We evaluate the proposed approach extensively, and experimental results show that our approach outperforms the state-of-the-art, offering significant performance gain in both satisfied demand and net revenue.
translated by 谷歌翻译
We present a unified and compact representation for object rendering, 3D reconstruction, and grasp pose prediction that can be inferred from a single image within a few seconds. We achieve this by leveraging recent advances in the Neural Radiance Field (NeRF) literature that learn category-level priors and fine-tune on novel objects with minimal data and time. Our insight is that we can learn a compact shape representation and extract meaningful additional information from it, such as grasping poses. We believe this to be the first work to retrieve grasping poses directly from a NeRF-based representation using a single viewpoint (RGB-only), rather than going through a secondary network and/or representation. When compared to prior art, our method is two to three orders of magnitude smaller while achieving comparable performance at view reconstruction and grasping. Accompanying our method, we also propose a new dataset of rendered shoes for training a sim-2-real NeRF method with grasping poses for different widths of grippers.
translated by 谷歌翻译
最近,与传统标准(例如JPEG,JPEG2000和BPG)相比,学到的图像压缩方法已经迅速发展,并表现出出色的速率延伸性能。但是,基于学习的方法遭受了高计算成本的损失,这对在资源有限的设备上部署无济于事。为此,我们提出了换档 - 附加并行模块(SAPMS),包括用于编码器的SAPM-E和解码器的SAPM-D,以大大减少能源消耗。具体而言,可以将它们视为插入式播放组件,以升级现有的基于CNN的体系结构,与加法分支相比,Shift分支用于提取大颗粒功能。此外,我们彻底分析了潜图的概率分布,并建议使用拉普拉斯混合物的可能性以进行更准确的熵估计。实验结果表明,所提出的方法可以在PSNR和MS-SSSIM指标上与卷积对应物的相当甚至更好的性能,并减少2倍的能量。
translated by 谷歌翻译
尽管在广泛的愿景任务中取得了诱人的成功,但变形金刚尚未在高分辨率图像生成建模中作为Convnets的讨论能力。在本文中,我们寻求探索使用纯变压器来构建用于高分辨率图像合成的生成对抗网络。为此,我们认为,当地的关注是在计算效率和建模能力之间取得平衡至关重要。因此,所提出的发电机采用基于风格的架构中的Swin变压器。为了实现更大的接收领域,我们提出了双重关注,同时利用本地和移位窗的上下文,从而提高了发电质量。此外,我们表明提供了在基于窗口的变压器中丢失的绝对位置的知识极大地利益了代理。所提出的STYLESWIN可扩展到高分辨率,粗糙几何和细结构都受益于变压器的强效力。然而,在高分辨率合成期间发生阻塞伪像,因为以块明智的方式执行局部注意力可能会破坏空间一致性。为了解决这一点,我们经验研究了各种解决方案,其中我们发现采用小波鉴别器来检查光谱差异的措施有效地抑制伪影。广泛的实验表明了对现有的基于变压器的GAN的优越性,特别是在高分辨率上,例如高分辨率,例如1024x1024。如果没有复杂的培训策略,则在Celeba-HQ 1024上赢得了STYLEGAN,并且在FFHQ-1024上实现了对PAR的表现,证明了使用变压器进行高分辨率图像生成的承诺。代码和模型将在https://github.com/microsoft/styleswin上使用。
translated by 谷歌翻译
共享的电子移动服务已被广泛测试和在全球城市中驾驶,并且已经编织成现代城市规划的结构。本文研究了这些系统中的实用而重要的问题:如何在空间和时间跨空间和时间部署和管理其基础架构,以便在可持续的盈利能力的同时对用户无处不在。然而,在现实世界的系统中,评估不同部署策略的性能,然后找到最佳计划是非常昂贵的,因为它通常是不可行的,可以对试用和错误进行许多迭代。我们通过设计高保真仿真环境来解决这一目标,该环境摘要在细粒度下共享电子移动系统的关键操作细节,并使用从现实世界中收集的数据进行校准。这使我们能够尝试任意部署计划来学习在实际在实际系统中实施任何内容之前的特定上下文。特别是,我们提出了一种新的多代理神经检索方法,其中我们设计了一个分层控制器以产生暂定部署计划。然后使用多模拟范例,即并行评估的生成的部署计划进行测试,其中结果用于用深增强学习训练控制器。通过这种闭环,控制器可以被引导以在将来的迭代中产生更好的部署计划的概率。在我们的仿真环境中,已经广泛评估了所提出的方法,实验结果表明它优于基于基于基于基于的基于基于基于的启发式的服务覆盖范围和净收入的方法。
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there is no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion-batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
In this paper, we investigate the joint device activity and data detection in massive machine-type communications (mMTC) with a one-phase non-coherent scheme, where data bits are embedded in the pilot sequences and the base station simultaneously detects active devices and their embedded data bits without explicit channel estimation. Due to the correlated sparsity pattern introduced by the non-coherent transmission scheme, the traditional approximate message passing (AMP) algorithm cannot achieve satisfactory performance. Therefore, we propose a deep learning (DL) modified AMP network (DL-mAMPnet) that enhances the detection performance by effectively exploiting the pilot activity correlation. The DL-mAMPnet is constructed by unfolding the AMP algorithm into a feedforward neural network, which combines the principled mathematical model of the AMP algorithm with the powerful learning capability, thereby benefiting from the advantages of both techniques. Trainable parameters are introduced in the DL-mAMPnet to approximate the correlated sparsity pattern and the large-scale fading coefficient. Moreover, a refinement module is designed to further advance the performance by utilizing the spatial feature caused by the correlated sparsity pattern. Simulation results demonstrate that the proposed DL-mAMPnet can significantly outperform traditional algorithms in terms of the symbol error rate performance.
translated by 谷歌翻译